Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python If you know Python and would like to use it for Geospatial Analysis this book is exactly what you've been looking for. With an organized, user-friendly approach it covers all the bases to give you the necessary skills and know-how.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781783281138
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python FREE CHAPTER 2. Geospatial Data 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modelling 9. Real-Time Data 10. Putting It All Together Index

GDAL


GDAL is the dominant geospatial library. Its raster capability is so significant that it is a part of virtually every geospatial toolkit in any language and Python is no exception. To see the basics of how GDAL works in Python, download the following sample raster satellite image as a ZIP file and unzip it: https://geospatialpython.googlecode.com/files/SatImage.zip

Let's open this image and see how many bands it has and how many pixels along each axis:

>>> from osgeo import gdal
>>> raster = gdal.Open("SatImage.tif")
>>> raster.RasterCount
3
>>> raster.RasterXSize
2592
>>> raster.RasterYSize
2693

So we see this image has three bands, 2,592 columns of pixels, and 2,693 rows of pixels, as shown in OpenEV:

GDAL is an extremely fast geospatial raster reader and writer within Python. It can also reproject images quite well plus a few other tricks. However, the true value of GDAL comes from its interaction with the next Python module that we'll examine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image