Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Harness the power of Python to analyze data and create insightful predictive models

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784396053
Length 344 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Extracting Features with Transformers 6. Social Media Insight Using Naive Bayes 7. Discovering Accounts to Follow Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Classifying Objects in Images Using Deep Learning 12. Working with Big Data A. Next Steps… Index

Summary


In this chapter, we looked at the text mining-based problem of authorship attribution. To perform this, we analyzed two types of features: function words and character n-grams. For function words, we were able to use the bag-of-words model—simply restricted to a set of words we chose beforehand. This gave us the frequencies of only those words. For character n-grams, we used a very similar workflow using the same class. However, we changed the analyzer to look at characters and not words. In addition, we used n-grams that are sequences of n tokens in a row—in our case characters. Word n-grams are also worth testing in some applications, as they can provide a cheap way to get the context of how a word is used.

For classification, we used SVMs that optimize a line of separation between the classes based on the idea of finding the maximum margin. Anything above the line is one class and anything below the line is another class. As with the other classification tasks we have considered...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime