Simulation of the posterior distribution
If one wants to find out the posterior of the model parameters, the sim( )
function of the arm package becomes handy. The following R script will simulate the posterior distribution of parameters and produce a set of histograms:
>posterior.bayes <- as.data.frame(coef(sim(fit.bayes))) >attach(posterior.bayes) >h1 <- ggplot(data = posterior.bayes,aes(x = X1)) + geom_histogram() + ggtitle("Histogram X1") >h2 <- ggplot(data = posterior.bayes,aes(x = X2)) + geom_histogram() + ggtitle("Histogram X2") >h3 <- ggplot(data = posterior.bayes,aes(x = X3)) + geom_histogram() + ggtitle("Histogram X3") >h4 <- ggplot(data = posterior.bayes,aes(x = X4)) + geom_histogram() + ggtitle("Histogram X4") >h5 <- ggplot(data = posterior.bayes,aes(x = X5)) + geom_histogram() + ggtitle("Histogram X5") >h7 <- ggplot(data = posterior.bayes,aes(x = X7)) + geom_histogram() + ggtitle("Histogram X7") >grid.arrange(h1,h2,h3,h4,h5,h7,nrow...