Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Visual and audio analysis

In Chapter 10, Visual and Audio Analysis, we demonstrate several Java techniques for processing sounds and images. We begin by demonstrating techniques for sound processing, including speech recognition and text-to-speech APIs. Specifically, we will use the FreeTTS (http://freetts.sourceforge.net/docs/index.php) API to convert text to speech. We also include a demonstration of the CMU Sphinx toolkit for speech recognition.

The Java Speech API (JSAPI) (http://www.oracle.com/technetwork/java/index-140170.html) supports speech technology. This API, created by third-party vendors, supports speech recognition and speech synthesizers. FreeTTS and Festival (http://www.cstr.ed.ac.uk/projects/festival/) are examples of vendors supporting JSAPI.

In the second part of the chapter, we examine image processing techniques such as facial recognition. This demonstration involves identifying faces within an image and is easy to accomplish using OpenCV (http://opencv.org/).

Also, in Chapter 10, Visual and Audio Analysis, we demonstrate how to extract text from images, a process known as OCR. A common data science problem involves extracting and analyzing text embedded in an image. For example, the information contained in license plate, road signs, and directions can be significant.

In the following example, explained in more detail in Chapter 11Mathematical and Parallel Techniques for Data Analysis accomplishes OCR using Tess4j (http://tess4j.sourceforge.net/) a Java JNA wrapper for Tesseract OCR API. We perform OCR on an image captured from the Wikipedia article on OCR (https://en.wikipedia.org/wiki/Optical_character_recognition#Applications), shown here:

Visual and audio analysis

The ITesseract interface provides numerous OCR methods. The doOCR method takes a file and returns a string containing the words found in the file as shown here:

ITesseract instance = new Tesseract();  
try { 
    String result = instance.doOCR(new File("OCRExample.png")); 
    System.out.println(result); 
} catch (TesseractException e) { 
    System.err.println(e.getMessage()); 
} 

A part of the output is shown next:

OCR engines nave been developed into many lunds oiobiectorlented OCR applicatlons, sucn as reoeipt OCR, involoe OCR, check OCR, legal billing document OCR

They can be used ior

- Data entry ior business documents, e g check, passport, involoe, bank statement and receipt

- Automatic number plate recognnlon

As you can see, there are numerous errors in this example that need to be addressed. We build upon this example in Chapter 11, Mathematical and Parallel Techniques for Data Analysis, with a discussion of enhancements and considerations to ensure the OCR process is as effective as possible.

We will conclude the chapter with a discussion of NeurophStudio, a neural network Java-based editor, to classify images and perform image recognition. We train a neural network to recognize and classify faces in this section.

You have been reading a chapter from
Java for Data Science
Published in: Jan 2017
Publisher: Packt
ISBN-13: 9781785280115
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image