In DQN architecture, we use experience replay to remove correlations between the training samples. However, uniformly sampling transitions from the replay memory is not an optimal method. Instead, we can prioritize transitions and sample according to priority. Prioritizing transitions helps the network to learn swiftly and effectively. How do we prioritize the transitions? We prioritize the transitions that have a high TD error. We know that a TD error specifies the difference between the estimated Q value and the actual Q value. So, transitions with a high TD error are the transition we have to focus on and learn from because those are the transitions that deviate from our estimation. Intuitively, let us say you try to solve a set of problems, but you fail in solving two of these problems. You then give priority to those two problems alone to focus...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine