Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On C++ Game Animation Programming

You're reading from   Hands-On C++ Game Animation Programming Learn modern animation techniques from theory to implementation with C++ and OpenGL

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800208087
Length 368 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Chapter 1: Creating a Game Window 2. Chapter 2: Implementing Vectors FREE CHAPTER 3. Chapter 3: Implementing Matrices 4. Chapter 4: Implementing Quaternions 5. Chapter 5: Implementing Transforms 6. Chapter 6: Building an Abstract Renderer 7. Chapter 7: Exploring the glTF File Format 8. Chapter 8: Creating Curves, Frames, and Tracks 9. Chapter 9: Implementing Animation Clips 10. Chapter 10: Mesh Skinning 11. Chapter 11: Optimizing the Animation Pipeline 12. Chapter 12: Blending between Animations 13. Chapter 13: Implementing Inverse Kinematics 14. Chapter 14: Using Dual Quaternions for Skinning 15. Chapter 15: Rendering Instanced Crowds 16. Other Books You May Enjoy

Skinning with dual quaternions

In this section, you will learn how to modify the skinning algorithm so that it works with dual quaternions instead of matrices. Specifically, you will replace the skin matrix with a skin dual quaternion that will transform both the vertex position and normal position.

The problem dual quaternions solve is the linear blending of matrices, which is currently implemented in a vertex shader. Specifically, this is the bit of code that introduces the skinning artifacts:

mat4 skin;
skin  = (pose[joints.x] * invBindPose[joints.x]) * weights.x;
skin += (pose[joints.y] * invBindPose[joints.y]) * weights.y;
skin += (pose[joints.z] * invBindPose[joints.z]) * weights.z;
skin += (pose[joints.w] * invBindPose[joints.w]) * weights.w;

There are three stages in the animation pipeline where it makes sense to replace matrices with dual quaternions. Each of these will have the same result. The three places where this should be implemented are listed here...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime