How RL differs from other ML paradigms
We can categorize ML into three types:
- Supervised learning
- Unsupervised learning
- RL
In supervised learning, the machine learns from training data. The training data consists of a labeled pair of inputs and outputs. So, we train the model (agent) using the training data in such a way that the model can generalize its learning to new unseen data. It is called supervised learning because the training data acts as a supervisor, since it has a labeled pair of inputs and outputs, and it guides the model in learning the given task.
Now, let's understand the difference between supervised and reinforcement learning with an example. Consider the dog analogy we discussed earlier in the chapter. In supervised learning, to teach the dog to catch a ball, we will teach it explicitly by specifying turn left, go right, move forward seven steps, catch the ball, and so on in the form of training data. But in RL, we just...