Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks with Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786469786
Length 320 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Fabrizio Milo Fabrizio Milo
Author Profile Icon Fabrizio Milo
Fabrizio Milo
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. First Look at TensorFlow 3. Using TensorFlow on a Feed-Forward Neural Network 4. TensorFlow on a Convolutional Neural Network 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. GPU Computing 8. Advanced TensorFlow Programming 9. Advanced Multimedia Programming with TensorFlow 10. Reinforcement Learning

Summary

In this chapter, we introduced some of the fundamental themes of deep learning. It consists of a set of methods that allow a machine learning system to obtain a hierarchical representation of data, on multiple levels. This is achieved by combining simple units, each of which transforms the representation at its own level, starting from the input level, in a representation at a higher level, slightly more abstract.

In recent years, these techniques have provided results never seen before in many applications, such as image recognition and speech recognition. One of the main reasons for the spread of these techniques has been the development of GPU architectures, which considerably reduced the training time of DNNs. There are different DNN architectures, each of which has been developed for a specific problem. We'll talk more about those architectures in later chapters, showing examples of applications created with the TensorFlow framework.

The chapter ended with a brief overview of the implemented deep learning frameworks.

In the next chapter, we begin our journey into deep learning, introducing the TensorFlow software library. We will describe its main features and look at how to install it and set up a first working session.

You have been reading a chapter from
Deep Learning with TensorFlow
Published in: Apr 2017
Publisher: Packt
ISBN-13: 9781786469786
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image