Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with fastai Cookbook

You're reading from   Deep Learning with fastai Cookbook Leverage the easy-to-use fastai framework to unlock the power of deep learning

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781800208100
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Mark Ryan Mark Ryan
Author Profile Icon Mark Ryan
Mark Ryan
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Getting Started with fastai 2. Chapter 2: Exploring and Cleaning Up Data with fastai FREE CHAPTER 3. Chapter 3: Training Models with Tabular Data 4. Chapter 4: Training Models with Text Data 5. Chapter 5: Training Recommender Systems 6. Chapter 6: Training Models with Visual Data 7. Chapter 7: Deployment and Model Maintenance 8. Chapter 8: Extended fastai and Deployment Features 9. Other Books You May Enjoy

Getting more details about models trained with tabular data

In the Training a model in fastai with a curated tabular dataset recipe of Chapter 3, Training Models with Tabular Data, you trained a fastai model on a tabular dataset and used accuracy as the metric. In this recipe, you will learn how to get additional metrics for this model: precision and recall. Precision is the ratio of true positives divided by true positives plus false positives. Recall is the ratio of true positives divided by true positives plus false negatives.

These are useful metrics. For example, the model we are training in this recipe is predicting whether an individual's income is over 50,000. If it is critical to avoid false positives – that is, predicting an income over 50,000 when the individual has an income less than that – then we want precision to be as high as possible. This recipe will show you how to add these useful metrics to the training process for a fastai model.

Getting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image