Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Deep Learning for Genomics
Deep Learning for Genomics

Deep Learning for Genomics: Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Profile Icon Upendra Kumar Devisetty
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Empty star icon 4 (8 Ratings)
Paperback Nov 2022 270 pages 1st Edition
eBook
€23.99 €26.99
Paperback
€33.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Upendra Kumar Devisetty
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Empty star icon 4 (8 Ratings)
Paperback Nov 2022 270 pages 1st Edition
eBook
€23.99 €26.99
Paperback
€33.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€23.99 €26.99
Paperback
€33.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Deep Learning for Genomics

Introducing Machine Learning for Genomics

Machine learning (ML) is the field of science that deals with developing computer algorithms and models that can perform certain tasks without explicitly programming them. This is to say, it teaches the machines to “learn” rather than specifying “rules” from input data provided to them. The machine then can convert that learning into expertise or knowledge and use that for predictions. ML is an important tool for leveraging technologies around artificial intelligence (AI), a subfield of computer science that aims to perform tasks automatically that we, as humans, are naturally good at. ML is an important aspect of all modern businesses and research. The adoption of ML for genomics applications is changing recently because of the availability of large genomic datasets, improvement in algorithms, and, most importantly, superior computational power. More and more scientific research organizations and industries are expanding the use of ML across vast volumes of genomic data for predictive diagnostics, as well as to get biological insights at the scale of population health.

Genomics, the study of the genetic constitution of organisms, holds promise in understanding and diagnosing human diseases or improving our agriculture and livestock. The field of genomics has seen exponential growth in the last 15 years, mainly due to recent technological advances in High-throughput sequencing also known as next-generation sequencing (NGS) technologies generating exponential amounts of genomics data. It is estimated that between 100 million and as many as 2 billion human genomes could be sequenced by 2025 (https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195), representing an astounding growth of four to five orders of magnitude in 10 years and far exceeding the growth of many big data domains. This complexity and the sheer amount of data generated create roadblocks not only to the acquisition, storage, and distribution but also to genomic data analysis. The current tools used in the genomic analysis are built on top of deterministic approaches and rely on rules encoded to perform a particular task. To keep up with data growth, we need more and new innovative approaches, such as ML, in genomics to enrich our understanding of basic biology and subject them to applied research. In this chapter, we’ll learn what ML is, why ML is essential for genomics, and what value ML brings to life sciences and biotechnology industries that leverage genome data for the development of genomic-based products. By the end of this chapter, you will understand the limitations of the current conventional algorithms for genomic data analysis, how solving problems with ML is different from conventional approaches, and how ML approaches can fill in those gaps and make generating biological insights very easy.

As such, in this chapter, we’re going to cover the following main topics:

  • What is machine learning?
  • Why machine learning for genomics?
  • Machine learning for genomics in life sciences and biotechnology
Left arrow icon Right arrow icon

Key benefits

  • Apply deep learning algorithms to solve real-world problems in the field of genomics
  • Extract biological insights from deep learning models built from genomic datasets
  • Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics

Description

Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you’ll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you’ll have learned about the challenges, best practices, and pitfalls of deep learning for genomics.

Who is this book for?

This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.

What you will learn

  • Discover the machine learning applications for genomics
  • Explore deep learning concepts and methodologies for genomics applications
  • Understand supervised deep learning algorithms for genomics applications
  • Get to grips with unsupervised deep learning with autoencoders
  • Improve deep learning models using generative models
  • Operationalize deep learning models from genomics datasets
  • Visualize and interpret deep learning models
  • Understand deep learning challenges, pitfalls, and best practices

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 11, 2022
Length: 270 pages
Edition : 1st
Language : English
ISBN-13 : 9781804615447
Category :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Nov 11, 2022
Length: 270 pages
Edition : 1st
Language : English
ISBN-13 : 9781804615447
Category :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 119.97
Bioinformatics with Python Cookbook
€43.99
Machine Learning in Biotechnology and Life Sciences
€41.99
Deep Learning for Genomics
€33.99
Total 119.97 Stars icon

Table of Contents

17 Chapters
Part 1 – Machine Learning in Genomics Chevron down icon Chevron up icon
Chapter 1: Introducing Machine Learning for Genomics Chevron down icon Chevron up icon
Chapter 2: Genomics Data Analysis Chevron down icon Chevron up icon
Chapter 3: Machine Learning Methods for Genomic Applications Chevron down icon Chevron up icon
Part 2 – Deep Learning for Genomic Applications Chevron down icon Chevron up icon
Chapter 4: Deep Learning for Genomics Chevron down icon Chevron up icon
Chapter 5: Introducing Convolutional Neural Networks for Genomics Chevron down icon Chevron up icon
Chapter 6: Recurrent Neural Networks in Genomics Chevron down icon Chevron up icon
Chapter 7: Unsupervised Deep Learning with Autoencoders Chevron down icon Chevron up icon
Chapter 8: GANs for Improving Models in Genomics Chevron down icon Chevron up icon
Part 3 – Operationalizing models Chevron down icon Chevron up icon
Chapter 9: Building and Tuning Deep Learning Models Chevron down icon Chevron up icon
Chapter 10: Model Interpretability in Genomics Chevron down icon Chevron up icon
Chapter 11: Model Deployment and Monitoring Chevron down icon Chevron up icon
Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(8 Ratings)
5 star 37.5%
4 star 25%
3 star 37.5%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




H2N Jul 14, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This textbook offers a practical and informative overview of the convergence of machine learning and biotechnology. It caters to individuals with experience in both fields and serves as a comprehensive concept refresher. Particularly valuable is its introduction to deep learning models in the context of biology and their interpretability. The inclusion of projects and code snippets empowers readers to embark on future endeavors confidently.
Amazon Verified review Amazon
Emerald Mar 12, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is the only book I can find on this topic. It’s very useful for me as a person who is relatively familiar to classical machine learning but just step into the field of genomics. I notice some comments mentioning that the book is a bit shallow. However, the book is just right to me. I like the Genomics Data Analysis part, which gives concrete examples. By these examples, I get a taste and have an idea about what people in this field are doing. My favorite part of the book is that the author gives many use cases and code examples. I’m sure this is a big topic and agree that if you want to understand the topic deeper, having this book only is not enough. But I’ll strongly recommend this book as a start for people like me. Btw, giving the paper book buyers an additional digital copy is another thing I like about the book.
Amazon Verified review Amazon
Sheena Apr 06, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book assumes technical knowledge so it is not for someone who is totally new to coding and deep learning. I think this book is a great primer for software developers who are new to genomics but have some solid fundamentals of classical machine learning and biology. It covers all the important topics of deep learning in genomics but you should not expect yourself to become an expert after reading this book. It saves you time, as a software developer who is new to genomics and deep learning, to sieve through the relevant topics and materials yourself by googling online. I wish I had this book handy when I did my onboarding for my previous job at a biotech startup. If you are looking for a primer to this topic, then this book is for you.
Amazon Verified review Amazon
Ekta Jun 27, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This book teaches you about deep learning approaches to solve problems in genomics, interpret biological insights from genomic datasets, and finally, operationalize deep learning models using open source tools to enable predictions for end users.Part 1: It introduces the fundamentals of genomic data analysis and machine learning for genomic data and its applications.Part 2: This covers the basic concepts of deep learning and how to transform raw genomics data into biological insights. It includes DNN, CNN, RNN, Auto-encoders and GAN models.Part 3: Final part covers the deep learning models using open source tools to enable predictions for end users. It includes building and tuning deep learning methods, model interpretability, deployment and monitoring. This part also covers challenges, and best practices for deep learning in Genomics.
Amazon Verified review Amazon
YS Jan 30, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
OVERVIEWThis textbook is a great high level overview of the concepts, tools, and techniques at the intersection of ML and biotechnology, but it could benefit from a few more rounds of content balancing and visual inclusion.+ This textbook is massively practical for those who are looking to understand the intersection of ML and genetics, and already have some experience in both fields.+ I studied data science and genetics, and I found the textbook to be both a **thorough concept refresher** and a **useful introduction for DL bio models and their interpretability**.+ The **practical inclusion of projects and code snippets** made any future projects I pursue to be a lot more accessible now that I know what tools to begin with.+ Talking about **typical practices and use-cases of different models/packages and how to manage and optimize them** was a refreshing take, compared to many textbooks that lack little real-world application+ Chapters are generally well-organized and build upon knowledge from prior chapters. Summaries at end of chapters are concise but still provide a thorough overview of the chapter- The **balance of content allocated** between introductory vs more complex topics **is uneven**. This makes the later DL chapters less accessible to those without a thorough ML background, as some topics seem to be glossed over- The textbook could also **benefit from having more visuals** and **fewer blocks of text**, both of which would increase the digestibility of the work. There are some great figures (e.g. figure 5.3) but more to break up the text and visually explain tough concepts would be helpful.A lot of work has gone into the textbook and it is very useful, but it requires some visual reshaping and rebalancing of depth to improve the reader experience.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.