Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science Algorithms in a Week

You're reading from   Data Science Algorithms in a Week Top 7 algorithms for scientific computing, data analysis, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789806076
Length 214 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David Toth David Toth
Author Profile Icon David Toth
David Toth
David Natingga David Natingga
Author Profile Icon David Natingga
David Natingga
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Classification Using K-Nearest Neighbors FREE CHAPTER 2. Naive Bayes 3. Decision Trees 4. Random Forests 5. Clustering into K Clusters 6. Regression 7. Time Series Analysis 8. Python Reference 9. Statistics 10. Glossary of Algorithms and Methods in Data Science
11. Other Books You May Enjoy

Mary and her temperature preferences

As an example, if we know that our friend, Mary, feels cold when it is 10°C, but warm when it is 25°C, then in a room where it is 22°C, the nearest neighbor algorithm would guess that our friend would feel warm, because 22 is closer to 25 than to 10.

Suppose that we would like to know when Mary feels warm and when she feels cold, as in the previous example, but in addition, wind speed data is also available when Mary is asked whether she feels warm or cold:

Temperature in °C

Wind speed in km/h

Mary's perception

10

0

Cold

25

0

Warm

15

5

Cold

20

3

Warm

18

7

Cold

20

10

Cold

22

5

Warm

24

6

Warm

 

We could represent the data in a graph, as follows:

Now, suppose we would like to find out how Mary feels when the temperature is 16°C with a wind speed of 3 km/h by using the 1-NN algorithm:

For simplicity, we will use a Manhattan metric to measure the distance between the neighbors on the grid. The Manhattan distance dMan of the neighbor N1=(x1,y1) from the neighbor N2=(x2,y2) is defined as dMan=|x1- x2|+|y1- y2|.

Let's label the grid with distances around the neighbors to see which neighbor with a known class is closest to the point we would like to classify:

We can see that the closest neighbor with a known class is the one with a temperature of 15°C (blue) and a wind speed of 5 km/h. Its distance from the point in question is three units. Its class is blue (cold). The closest red (warm) neighbour is at a distance of four units from the point in question. Since we are using the 1-nearest neighbor algorithm, we just look at the closest neighbor and, therefore, the class of the point in question should be blue (cold).

By applying this procedure to every data point, we can complete the graph, as follows:

Note that, sometimes, a data point might be the same distance away from two known classes: for example, 20°C and 6 km/h. In such situations, we could prefer one class over the other, or ignore these boundary cases. The actual result depends on the specific implementation of an algorithm.

You have been reading a chapter from
Data Science Algorithms in a Week - Second Edition
Published in: Oct 2018
Publisher: Packt
ISBN-13: 9781789806076
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image