Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with R, Second Edition

You're reading from   Data Analysis with R, Second Edition A comprehensive guide to manipulating, analyzing, and visualizing data in R

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788393720
Length 570 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tony Fischetti Tony Fischetti
Author Profile Icon Tony Fischetti
Tony Fischetti
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. RefresheR 2. The Shape of Data FREE CHAPTER 3. Describing Relationships 4. Probability 5. Using Data To Reason About The World 6. Testing Hypotheses 7. Bayesian Methods 8. The Bootstrap 9. Predicting Continuous Variables 10. Predicting Categorical Variables 11. Predicting Changes with Time 12. Sources of Data 13. Dealing with Missing Data 14. Dealing with Messy Data 15. Dealing with Large Data 16. Working with Popular R Packages 17. Reproducibility and Best Practices 18. Other Books You May Enjoy

Logistic regression


Remember when I said a thorough understanding of linear models will pay enormous dividends throughout your career as an analyst in the previous chapter? Well, I wasn't lying! This next classifier is a product of a generalization of linear regression that can act as a classifier.

What if we used linear regression on a binary outcome variable, representing diabetes as 1 and not diabetes as 0? We know that the output of linear regression is a continuous prediction, but what if, instead of predicting the binary class (diabetes or not diabetes), we attempted to predict the probability of an observation having diabetes? So far, the idea is to train a linear regression on a training set where the variables we are trying to predict are dummy-coded as 0 or 1, and the predictions on an independent training set are interpreted as a continuous probability of class membership.

It turns out this idea is not quite as crazy as it sounds—the outcome of the predictions are indeed proportional...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime