Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cryptography Algorithms

You're reading from   Cryptography Algorithms Explore New Algorithms in Zero-knowledge, Homomorphic Encryption, and Quantum Cryptography

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781835080030
Length 410 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Massimo Bertaccini Massimo Bertaccini
Author Profile Icon Massimo Bertaccini
Massimo Bertaccini
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: A Brief History and Outline of Cryptography
2. Deep Dive into Cryptography FREE CHAPTER 3. Section 2: Classical Cryptography (Symmetric and Asymmetric Encryption)
4. Symmetric Encryption Algorithms 5. Asymmetric Encryption Algorithms 6. Hash Functions and Digital Signatures 7. Section 3: New Cryptography Algorithms and Protocols
8. Zero-Knowledge Protocols 9. New Inventions in Cryptography and Logical Attacks 10. Elliptic Curves 11. Homomorphic Encryption and Crypto Search Engine 12. Section 4: Quantum Cryptography
13. Quantum Cryptography 14. Quantum Search Algorithms and Quantum Computing 15. Other Books You May Enjoy
16. Index

Digital signatures on MBXI

Returning to MBXI, we notice that [x], the reformulated encryption key, is able to perform the encryption:

[x] results in the inverse of [y], the decryption key, in the following function:

In mathematical language, the encryption equation looks as follows:

This result is the inverse of the decryption equation, [y]:

Let’s perform a test with numbers to understand it better:

  • x = 3009
  • y = 4955

If we input x = 3009 in the inverse function (mod p-1), we can find the result [y] using Mathematica:

That means if Bob sends a message using MBXI, he will share a [secret key] type with Alice.

Another problem arises: how is it possible to avoid a MiM attack in a symmetric algorithm?

As you can see, MBXI has more characteristics of an asymmetric algorithm than a symmetric algorithm, so let’s analyze the algorithms of the digital signature for MBXI.

As we have learned...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image