Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

The drawbacks of k-means

k-means is one of the most popular clustering algorithms due to its relative ease of implementation and the fact that it can be made to scale well to very large datasets. In spite of its popularity, there are several drawbacks.

k-means is stochastic, and does not guarantee to find the global optimum solution for clustering. In fact, the algorithm can be very sensitive to outliers and noisy data: the quality of the final clustering can be highly dependent on the position of the initial cluster centroids. In other words, k-means will regularly discover a local rather than global minimum.

The drawbacks of k-means

The preceding diagram illustrates how k-means may converge to a local minimum based on poor initial cluster centroids. Non-optimal clustering may even occur if the initial cluster centroids are well-placed, since k-means prefers clusters with similar sizes and densities. Where clusters are not approximately equal in size and density, k-means may fail to converge to the most natural...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image