Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building AI Applications with Microsoft Semantic Kernel

You're reading from   Building AI Applications with Microsoft Semantic Kernel Easily integrate generative AI capabilities and copilot experiences into your applications

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781835463703
Length 252 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Lucas A. Meyer Lucas A. Meyer
Author Profile Icon Lucas A. Meyer
Lucas A. Meyer
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Part 1:Introduction to Generative AI and Microsoft Semantic Kernel
2. Chapter 1: Introducing Microsoft Semantic Kernel FREE CHAPTER 3. Chapter 2: Creating Better Prompts 4. Part 2: Creating AI Applications with Semantic Kernel
5. Chapter 3: Extending Semantic Kernel 6. Chapter 4: Performing Complex Actions by Chaining Functions 7. Chapter 5: Programming with Planners 8. Chapter 6: Adding Memories to Your AI Application 9. Part 3: Real-World Use Cases
10. Chapter 7: Real-World Use Case – Retrieval-Augmented Generation 11. Chapter 8: Real-World Use Case – Making Your Application Available on ChatGPT 12. Index 13. Other Books You May Enjoy

Why would you need to customize GPT models?

GPT models are already very useful without any customizations. When your user types a request, you, as a programmer, could simply forward the request to the GPT model (such as GPT-3.5 or GPT-4), and, in many cases, the unaltered response from the model is good enough. However, in many cases, the responses aren’t good enough. There are three categories of problems with responses:

  • Non-text functionality: In some cases, the response you want is not text-based. For example, you may want to allow your user to turn a light on or off, perform complex math, or insert records into a database.
  • Lack of context: Models can’t accurately answer questions if they haven’t been exposed to the data that contains the answer. Despite being trained with immense amounts of data, there’s a lot of data that LLMs haven’t been exposed to. At the time of writing, the cut-off date for data used to train GPT 3.5 and GPT...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime