Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Factory Cookbook

You're reading from   Azure Data Factory Cookbook Build and manage ETL and ELT pipelines with Microsoft Azure's serverless data integration service

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781800565296
Length 382 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (4):
Arrow left icon
Dmitry Anoshin Dmitry Anoshin
Author Profile Icon Dmitry Anoshin
Dmitry Anoshin
Roman Storchak Roman Storchak
Author Profile Icon Roman Storchak
Roman Storchak
Xenia Ireton Xenia Ireton
Author Profile Icon Xenia Ireton
Xenia Ireton
Dmitry Foshin Dmitry Foshin
Author Profile Icon Dmitry Foshin
Dmitry Foshin
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with ADF 2. Chapter 2: Orchestration and Control Flow FREE CHAPTER 3. Chapter 3: Setting Up a Cloud Data Warehouse 4. Chapter 4: Working with Azure Data Lake 5. Chapter 5: Working with Big Data – HDInsight and Databricks 6. Chapter 6: Integration with MS SSIS 7. Chapter 7: Data Migration – Azure Data Factory and Other Cloud Services 8. Chapter 8: Working with Azure Services Integration 9. Chapter 9: Managing Deployment Processes with Azure DevOps 10. Chapter 10: Monitoring and Troubleshooting Data Pipelines 11. Other Books You May Enjoy

Creating big data pipelines using Azure Data Lake and Azure Data Factory

Running big data pipelines is an essential feature of Azure Data Factory. They allow you to ingest and preprocess data at any scale. You can program and test any ELT/ETL processes out of the web UI. This is one of the core tasks of the data engineer in your company.

Getting ready

Let's load and preprocess the MovieLens dataset (F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19. https://doi.org/10.1145/2827872). It contains ratings and free-text tagging activity from a movie recommendation service.

The MovieLens dataset exists in a few sizes, which have the same structure. The smallest one has 100,000 ratings, 600 users, and 9,000 movies. The biggest one can be as big as 1.2 billion reviews, 2.2 million users, and 855,000 items.

MovieLens is distributed as a set...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime