Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide A hands-on reference guide to developing your data engineering skills and preparing for the DP-203 exam

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801816069
Length 574 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Azure Basics
2. Chapter 1: Introducing Azure Basics FREE CHAPTER 3. Part 2: Data Storage
4. Chapter 2: Designing a Data Storage Structure 5. Chapter 3: Designing a Partition Strategy 6. Chapter 4: Designing the Serving Layer 7. Chapter 5: Implementing Physical Data Storage Structures 8. Chapter 6: Implementing Logical Data Structures 9. Chapter 7: Implementing the Serving Layer 10. Part 3: Design and Develop Data Processing (25-30%)
11. Chapter 8: Ingesting and Transforming Data 12. Chapter 9: Designing and Developing a Batch Processing Solution 13. Chapter 10: Designing and Developing a Stream Processing Solution 14. Chapter 11: Managing Batches and Pipelines 15. Part 4: Design and Implement Data Security (10-15%)
16. Chapter 12: Designing Security for Data Policies and Standards 17. Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)
18. Chapter 13: Monitoring Data Storage and Data Processing 19. Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing 20. Part 6: Practice Exercises
21. Chapter 15: Sample Questions with Solutions 22. Other Books You May Enjoy

Designing analytical stores

Analytical stores could either be SQL or NoSQL data stores deployed in the data lake Serving Zone. The main job of an analytical data store is to serve the data generated by the data transformation pipelines to the BI tools in a fast and simple manner. Analytical stores are usually subjected to ad hoc querying from business analysts and other end users. As such, these stores need to perform really well with random reads. Azure provides a variety of storage technologies that can cater to these requirements. Here are some of the most important ones:

  • Azure Synapse Analytics (Serverless/dedicated SQL pools and Spark pools)—Synapse Analytics provides both SQL pools and Spark pools. Among these, the SQL dedicated pools are massively parallel processing (MPP) data warehouses and are usually ideal for a majority of analytical store situations. Serverless SQL pools can be used for ad hoc querying. Spark pools, on the other hand, can support analytical...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image