Regularization
Since deep neural networks are highly flexible models, overfitting is an issue that can often arise when training them. Therefore, one very important part of becoming a deep learning expert is knowing how to detect overfitting, and subsequently how to address the overfitting problem in your model. Regularization techniques are an important group of methods specifically aimed at reducing overfitting in machine learning models. Understanding regularization techniques thoroughly and being able to apply them to your deep neural networks is an essential step toward building deep neural networks in order to solve real-life problems. In this section, you will learn about the underlying concepts of regularization, providing you with the foundation required for the following sections, where you will learn how to implement various types of regularization methods using Keras.
The Need for Regularization
The main goal of machine learning is to build models that perform well on not only...