Facebook MUSE has state-of-the-art multilingual word embeddings for over 30 languages based on fastText. fastText is a library for efficient learning of word representations and sentence classification. fastText can be used for making word embeddings using Skipgram, word2vec or CBOW (Continuous Bag of Words) and use it for text classification.
For downloading the English (en) and Spanish (es) embeddings, you can use:
# English fastText Wikipedia embeddings
curl -Lo data/wiki.en.vec https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
# Spanish fastText Wikipedia embeddings
curl -Lo data/wiki.es.vec https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.es.vec
Facebook MUSE also has 110 large-scale high-quality, truth, bilingual dictionaries to ease the development and evaluation of cross-lingual word embeddings and multilingual NLP. These dictionaries are created using an internal translation tool. The dictionaries handle the polysemy (the coexistence of many possible meanings for a word) of words well.
As mentioned earlier, MUSE has two ways to obtain cross-lingual word embeddings.
The Supervised approach uses a training bilingual dictionary (or identical character strings as anchor points) to learn a mapping from the source to the target space using Procrustes alignment.
To learn a mapping between the source and the target space, simply run:
python supervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec --n_iter 5 --dico_train default
The unsupervised approach learns a mapping from the source to the target space using adversarial training and Procrustes refinement without any parallel data or anchor point.
To learn a mapping using adversarial training and iterative Procrustes refinement, run:
python unsupervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec
Facebook MUSE also has a simple script to evaluate the quality of monolingual or cross-lingual word embeddings on several tasks:
python evaluate.py --src_lang en --src_emb data/wiki.en.vec --max_vocab 200000
python evaluate.py --src_lang en --tgt_lang es --src_emb data/wiki.en-es.en.vec --tgt_emb data/wiki.en-es.es.vec --max_vocab 200000
To know more about the functionalities of this library and to download other resources, you can go through the official GitHub repo here.