Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Threat Hunting with Elastic Stack

You're reading from   Threat Hunting with Elastic Stack Solve complex security challenges with integrated prevention, detection, and response

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781801073783
Length 392 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew Pease Andrew Pease
Author Profile Icon Andrew Pease
Andrew Pease
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Introduction to Threat Hunting, Analytical Models, and Hunting Methodologies
2. Chapter 1: Introduction to Cyber Threat Intelligence, Analytical Models, and Frameworks FREE CHAPTER 3. Chapter 2: Hunting Concepts, Methodologies, and Techniques 4. Section 2: Leveraging the Elastic Stack for Collection and Analysis
5. Chapter 3: Introduction to the Elastic Stack 6. Chapter 4: Building Your Hunting Lab – Part 1 7. Chapter 5: Building Your Hunting Lab – Part 2 8. Chapter 6: Data Collection with Beats and Elastic Agent 9. Chapter 7: Using Kibana to Explore and Visualize Data 10. Chapter 8: The Elastic Security App 11. Section 3: Operationalizing Threat Hunting
12. Chapter 9: Using Kibana to Pivot Through Data to Find Adversaries 13. Chapter 10: Leveraging Hunting to Inform Operations 14. Chapter 11: Enriching Data to Make Intelligence 15. Chapter 12: Sharing Information and Analysis 16. Assessments 17. Other Books You May Enjoy

The Diamond Model

The Diamond Model (The Diamond Model of Intrusion Analysis, Caltagirone, Sergio ; Pendergast, Andrew ; Betz, Christopher, https://apps.dtic.mil/dtic/tr/fulltext/u2/a586960.pdf) was created by a non-profit organization called the Center for Cyber Intelligence Analysis and Threat Research (CCIATR). The paper, titled The Diamond Model of Intrusion Analysis, was released in 2013 with the novel goal to provide a standardized approach to characterize campaigns, differentiate one campaign from another, track their life cycles, and finally, develop countermeasures to mitigate them.

The Diamond Model uses a simple visual to illustrate six elements valuable for campaign tracking: Adversary, Infrastructure, Victim, Capabilities, Socio-political, and Tactics, Techniques, and Procedures (TTP).

Adversary (a)

This element describes the entity that is the threat actor involved in the campaign, either directly or even indirectly. This can include individual names, organizations, monikers, handles, social media profiles, code names, addresses (physical, email, and so on), telephone numbers, employers, network-connected assets, and so on. Essentially, features that you can use to describe the bad guy.

Important note

Network-connected assets can fall into either an adversary or infrastructure node depending on the context. A computer named cruisin-box may be used by the adversary for leisure activities on the internet and be used to describe the person, while hax0r-box may be used by the adversary for network attack and exploitation campaigns and be used to describe the attack infrastructure.

Infrastructure (i)

This element describes the entity that describes the adversary-controlled infrastructure leveraged in the campaign. This can include things such as IP addresses, hostnames, domain names, email addresses, network-connected assets, and so on. As we track the life cycle of the campaign and when changing the Diamond Model to the Lockheed Martin Kill Chain, and even MITRE's ATT&CK matrices, the infrastructure can start as an external entity but quickly become an internal entity.

Victim (v)

This element describes the entity that is the victim targeted in the campaign. This can describe the same things as the Adversary element but within the context of the victim versus the adversary, so again, this refers to individual names, organizations, and so on. Beyond the scope of context, the victim's network-connected assets are included here if they are relevant to the campaign, while adversary network-controlled assets may be included as part of the Adversary or Infrastructure nodes depending on the context, as described previously.

Capabilities (c)

This element describes the capabilities leveraged in the campaign. There is certainly value in cataloging capabilities that may be known by the analyst as being available to the adversary, but generally, as it relates to the Capabilities node, it's describing the observed capabilities.

Motivations

I would be remiss to skip over the motivational vertices. These are hugely valuable in describing high-level campaign objectives and are used to help describe how the capabilities and infrastructure relate to, and are leveraged by, one another.

In espionage, actor motivations are distilled into the four categories of MICE, and I think that they make sense in cyber security too:

  • Money
  • Ideology
  • Coercion
  • Ego

Money is used as a motivating factor through the collection of capital for work performed. This capital can be a few different things including cash, gifts, status, political position, and so on. A large majority of attackers are likely to fall under the money category; they launch attacks to get money for extortion, selling access or data, or other such campaign objectives that result in making money as a result of their intrusion.

Ideology is a motivating factor in that an actor believes in a specific cause or has fierce patriotism, believing that they should carry out offensive actions either to further their cause or national strategic interests.

Coercion is a motivating factor in that an actor has some sort of situation that can be used as leverage to force them to carry out offensive actions. Examples of leverage can be a secret, sick family members, or having performed previous actions.

Figure 1.5 – The Diamond Model

Ego is a motivating factor in that an actor believes that they are more skilled than their peers (if they believe they have any); they believe that they have been marginalized, or simply seek to catalog their exploits for "internet points."

Important note

While we look at MICE to represent threat actor motivations, it is important to remember that defenders usually do their work on the other side of the keyboard for much the same reasons of money, ideology, and/or ego, and much less commonly, coercion.

Directionality

In campaign tracking, there is certainly value in describing the different nodes of the Diamond Model, but there are also the edges that show how the nodes are associated with each other. If you look through the preceding discussion, you'll see that there is a single letter next to each node ((a)dversary, (i)nfrastructure, (v)ictim, and (c)apabilities). We can use this to describe the direction of the node relationships of the campaign, which can improve response activities, mitigations, and resource prioritization by knowing how the adversary is moving throughout the campaign. Different directionalities include Victim-to-Infrastructure (v2i), Infrastructure-to-Victim (i2v), Infrastructure-to-Infrastructure (i2i), Adversary-to-Infrastructure (a2i), and Infrastructure-to-Adversary (i2a).

You have been reading a chapter from
Threat Hunting with Elastic Stack
Published in: Jul 2021
Publisher: Packt
ISBN-13: 9781801073783
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime