Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Working with Text-Based Distances


Nearest neighbors is more versatile than just dealing with numbers. As long as we have a way to measure distances between features, we can apply the nearest neighbors algorithm. In this recipe, we will introduce how to measure text distances with TensorFlow.

Getting ready

In this recipe, we will illustrate how to use TensorFlow's text distance metric, the Levenshtein distance (the edit distance), between strings. This will be important later in this chapter as we expand the nearest neighbor methods to include features with text.

The Levenshtein distance is the minimal number of edits to get from one string to another string. The allowed edits are inserting a character, deleting a character, or substituting a character with a different one. For this recipe, we will use TensorFlow's Levenshtein distance function, edit_distance(). It is worthwhile to illustrate the use of this function because the usage of this function will be applicable to later chapters.

Note...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime