Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents
Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs
Balance cost and performance between dynamic retrieval datasets and fine-tuning static data
Description
RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.
This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.
You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.
Who is this book for?
This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.
What you will learn
Scale RAG pipelines to handle large datasets efficiently
Employ techniques that minimize hallucinations and ensure accurate responses
Implement indexing techniques to improve AI accuracy with traceable and transparent outputs
Customize and scale RAG-driven generative AI systems across domains
Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval
Control and build robust generative AI systems grounded in real-world data
Combine text and image data for richer, more informative AI responses
Opened the book for the first time and the binding started coming apart. Not commenting on content, yet, since I just opened it.
Amazon Verified review
Om SOct 23, 2024
4
When I was struggling to make my AI models provide accurate and reliable information, I came across Denis Rothman's "RAG-Driven Generative AI." This book turned out to be exactly what I needed. It introduces Retrieval Augmented Generation (RAG) in a way that's easy to understand, showing how to link AI outputs directly to their source documents. The hands-on examples using tools like LlamaIndex, Deep Lake, and Pinecone helped me apply the concepts to my own projects. I also appreciated the tips on minimizing errors and improving performance with human feedback. Whether you're building AI systems for work or personal projects, this book offers practical advice to make your models more accurate and trustworthy.
Amazon Verified review
Salman FarsiOct 21, 2024
4
This is book is one of the best additions in my library.Comprehensive Coverage: The book provides an in-depth exploration of Retrieval Augmented Generation (RAG), detailing both foundational concepts and advanced techniques.Practical Implementation: It includes practical examples and code snippets, particularly useful for those looking to build custom RAG pipelines using LlamaIndex, Deep Lake, and Pinecone.Expert Insights: Authored by Denis Rothman, a seasoned AI expert, the book benefits from his extensive experience and includes contributions from other industry professionals.Resourceful Appendices: The appendices and additional resources, such as the GitHub code repository, enhance the learning experience by providing ready-to-use tools and further reading materials.
Amazon Verified review
Siddhartha VemugantiOct 15, 2024
5
Denis Rothman's "RAG-Driven Gen AI" offers a comprehensive exploration of Retrieval-Augmented Generation systems, addressing a critical need in the rapidly evolving field of artificial intelligence. This book stands out for its practical approach, bridging the gap between theoretical concepts and real-world applications.Rothman's writing style is accessible yet thorough, guiding readers from foundational principles to advanced implementations of RAG systems. The book's structure feels well-considered, allowing readers to build their understanding progressively. While it assumes some prior knowledge of machine learning and Python, making it less suitable for complete beginners, it offers valuable insights for software engineers, developers, and data scientists looking to expand their AI toolkit.One of the book's strengths lies in its diverse range of practical examples. By covering applications from drone technology to customer retention, Rothman effectively demonstrates the versatility of RAG systems. The chapter on multimodal RAG for drone technology is particularly intriguing, opening up new possibilities that many readers might not have previously considered.A standout feature is the book's attention to often-overlooked aspects of AI development, such as software versioning and package management. Rothman's detailed guidance on version control and dependency management addresses real challenges faced by practitioners, potentially saving readers significant time and frustration.The hands-on approach, complete with projects and source code, transforms the book from a mere reference into a practical learning tool. Rothman doesn't shy away from discussing performance optimization and cost management – crucial considerations for implementing AI solutions in production environments.However, readers should be aware that the rapid pace of AI advancement may necessitate supplementing this book with current research and developments. Some cutting-edge concepts discussed may evolve quickly."RAG-Driven Gen AI" serves as a valuable resource for those looking to understand and implement RAG systems. While it may not be the only book you'll need on the subject, it provides a solid foundation and practical insights that many readers will find useful. Rothman's work effectively captures the current state of RAG technology while offering guidance that should remain relevant as the field continues to evolve.For professionals aiming to leverage the power of RAG systems or enhance their AI capabilities, this book is a worthwhile addition to their technical library. It offers a balanced mix of theoretical understanding and practical application, making it a useful companion for those navigating the complex landscape of modern AI development.
Amazon Verified review
Previous
1
2
3
Next
About the author
Denis Rothman
Denis Rothman
Denis Rothman graduated from Sorbonne University and Paris-Diderot University, and as a student, he wrote and registered a patent for one of the earliest word2vector embeddings and word piece tokenization solutions. He started a company focused on deploying AI and went on to author one of the first AI cognitive NLP chatbots, applied as a language teaching tool for Moët et Chandon (part of LVMH) and more. Denis rapidly became an expert in explainable AI, incorporating interpretable, acceptance-based explanation data and interfaces into solutions implemented for major corporate projects in the aerospace, apparel, and supply chain sectors. His core belief is that you only really know something once you have taught somebody how to do it.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.