Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

You're reading from   Quantum Computing in Practice with Qiskit® and IBM Quantum Experience® Practical recipes for quantum computer coding at the gate and algorithm level with Python

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781838828448
Length 408 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hassi Norlen Hassi Norlen
Author Profile Icon Hassi Norlen
Hassi Norlen
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Preparing Your Environment 2. Chapter 2: Quantum Computing and Qubits with Python FREE CHAPTER 3. Chapter 3: IBM Quantum Experience® – Quantum Drag and Drop 4. Chapter 4: Starting at the Ground Level with Terra 5. Chapter 5: Touring the IBM Quantum® Hardware with Qiskit® 6. Chapter 6: Understanding the Qiskit® Gate Library 7. Chapter 7: Simulating Quantum Computers with Aer 8. Chapter 8: Cleaning Up Your Quantum Act with Ignis 9. Chapter 9: Grover's Search Algorithm 10. Chapter 10: Getting to Know Algorithms with Aqua 11. Other Books You May Enjoy

Chapter 8: Cleaning Up Your Quantum Act with Ignis

We have explored running our quantum programs on idealized Qiskit Aer simulators and gotten our hands dirty with the actual IBM Quantum machines. We understand that real qubits are noisy and that we cannot expect quantum computers to solve actual real-world problems of any significant magnitude (yet). On the path to this future application lies fighting and mitigating noise and errors, and on that path lies Qiskit Ignis.

Qiskit® includes a lot of automation, such as the optimization of the assigned qubits according to connectivity and performance; but this automation is, to an extent, limited by the physical layout of a quantum chip, which controls how the qubits can communicate with each other. By studying the qubit performance and specifying which actual physical qubits you want to use with your quantum programs, you can optimize your circuits for optimal entanglement and decoherence, to name a few examples.

In...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime