Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Learn how to build powerful Python machine learning algorithms to generate useful data insights with this data analysis tutorial

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783555130
Length 454 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Training Artificial Neural Networks for Image Recognition 13. Parallelizing Neural Network Training with Theano Index

Implementing a simple majority vote classifier


After the short introduction to ensemble learning in the previous section, let's start with a warm-up exercise and implement a simple ensemble classifier for majority voting in Python. Although the following algorithm also generalizes to multi-class settings via plurality voting, we will use the term majority voting for simplicity as is also often done in literature.

The algorithm that we are going to implement will allow us to combine different classification algorithms associated with individual weights for confidence. Our goal is to build a stronger meta-classifier that balances out the individual classifiers' weaknesses on a particular dataset. In more precise mathematical terms, we can write the weighted majority vote as follows:

Here, is a weight associated with a base classifier, , is the predicted class label of the ensemble, (Greek chi) is the characteristic function , and A is the set of unique class labels. For equal weights, we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime