Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Feature Engineering Cookbook

You're reading from   Python Feature Engineering Cookbook A complete guide to crafting powerful features for your machine learning models

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781835883587
Length 396 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Soledad Galli Soledad Galli
Author Profile Icon Soledad Galli
Soledad Galli
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Imputing Missing Data FREE CHAPTER 2. Chapter 2: Encoding Categorical Variables 3. Chapter 3: Transforming Numerical Variables 4. Chapter 4: Performing Variable Discretization 5. Chapter 5: Working with Outliers 6. Chapter 6: Extracting Features from Date and Time Variables 7. Chapter 7: Performing Feature Scaling 8. Chapter 8: Creating New Features 9. Chapter 9: Extracting Features from Relational Data with Featuretools 10. Chapter 10: Creating Features from a Time Series with tsfresh 11. Chapter 11: Extracting Features from Text Variables 12. Index 13. Other Books You May Enjoy

Technical requirements

In this chapter, we will use the Python libraries Matplotlib, pandas, NumPy, scikit-learn, and Feature-engine. If you need to install Python, the free Anaconda Python distribution (https://www.anaconda.com/) includes most numerical computing libraries.

feature-engine can be installed with pip as follows:

pip install feature-engine

If you use Anaconda, you can install feature-engine with conda:

conda install -c conda-forge feature_engine

Note

The recipes from this chapter were created using the latest versions of the Python libraries at the time of publishing. You can check the versions in the requirements.txt file in the accompanying GitHub repository, at https://github.com/PacktPublishing/Python-Feature-engineering-Cookbook-Third-Edition/blob/main/requirements.txt.

We will use the Credit Approval dataset from the UCI Machine Learning Repository (https://archive.ics.uci.edu/), licensed under the CC BY 4.0 creative commons attribution: https://creativecommons.org/licenses/by/4.0/legalcode. You’ll find the dataset at this link: http://archive.ics.uci.edu/dataset/27/credit+approval.

I downloaded and modified the data as shown in this notebook: https://github.com/PacktPublishing/Python-Feature-engineering-Cookbook-Third-Edition/blob/main/ch01-missing-data-imputation/credit-approval-dataset.ipynb

We will also use the air passenger dataset located in Facebook’s Prophet GitHub repository (https://github.com/facebook/prophet/blob/main/examples/example_air_passengers.csv), licensed under the MIT license: https://github.com/facebook/prophet/blob/main/LICENSE

I modified the data as shown in this notebook: https://github.com/PacktPublishing/Python-Feature-engineering-Cookbook-Third-Edition/blob/main/ch01-missing-data-imputation/air-passengers-dataset.ipynb

You’ll find a copy of the modified data sets in the accompanying GitHub repository: https://github.com/PacktPublishing/Python-Feature-engineering-Cookbook-Third-Edition/blob/main/ch01-missing-data-imputation/

You have been reading a chapter from
Python Feature Engineering Cookbook - Third Edition
Published in: Aug 2024
Publisher: Packt
ISBN-13: 9781835883587
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime