Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenGL Development Cookbook

You're reading from   OpenGL Development Cookbook OpenGL brings an added dimension to your graphics by utilizing the remarkable power of modern GPUs. This straight-talking cookbook is perfect for intermediate C++ programmers who want to exploit the full potential of OpenGL.

Arrow left icon
Product type Paperback
Published in Jun 2013
Publisher Packt
ISBN-13 9781849695046
Length 326 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Muhammad Mobeen Movania Muhammad Mobeen Movania
Author Profile Icon Muhammad Mobeen Movania
Muhammad Mobeen Movania
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Modern OpenGL FREE CHAPTER 2. 3D Viewing and Object Picking 3. Offscreen Rendering and Environment Mapping 4. Lights and Shadows 5. Mesh Model Formats and Particle Systems 6. GPU-based Alpha Blending and Global Illumination 7. GPU-based Volume Rendering Techniques 8. Skeletal and Physically-based Simulation on the GPU Index

Dynamically subdividing a plane using the geometry shader with instanced rendering

In order to avoid pushing the same data multiple times, we can exploit the instanced rendering functions. We will now see how we can omit the multiple glDrawElements calls in the previous recipe with a single glDrawElementsInstanced call.

Getting ready

Before doing this, we assume that the reader knows how to use the geometry shader in the OpenGL 3.3 core profile. The code for this recipe is in the Chapter1\SubdivisionGeometryShader_Instanced directory.

How to do it…

Converting the previous recipe to use instanced rendering requires the following steps:

  1. Change the vertex shader to handle the instance modeling matrix and output world space positions (shaders/shader.vert).
    #version 330 core
    layout(location=0) in vec3 vVertex;  
    uniform mat4 M[4];
    void main()
    {
      gl_Position =  M[gl_InstanceID]*vec4(vVertex, 1);
    }
  2. Change the geometry shader to replace the MVP matrix with the PV matrix (shaders/shader.geom).
    #version 330 core
    layout (triangles) in;
    layout (triangle_strip, max_vertices=256) out;
    uniform int sub_divisions;
    uniform mat4 PV;
    
    void main()
    {
      vec4 v0 = gl_in[0].gl_Position;
      vec4 v1 = gl_in[1].gl_Position;
      vec4 v2 = gl_in[2].gl_Position;
      float dx = abs(v0.x-v2.x)/sub_divisions;
      float dz = abs(v0.z-v1.z)/sub_divisions;
      float x=v0.x;
      float z=v0.z;
      for(int j=0;j<sub_divisions*sub_divisions;j++) {
        gl_Position =  PV * vec4(x,0,z,1);        EmitVertex();
        gl_Position =  PV * vec4(x,0,z+dz,1);     EmitVertex();
        gl_Position =  PV * vec4(x+dx,0,z,1);     EmitVertex();
        gl_Position =  PV * vec4(x+dx,0,z+dz,1);  EmitVertex();
        EndPrimitive();
        x+=dx;
        if((j+1) %sub_divisions == 0) {
          x=v0.x;
          z+=dz;
        }
      }
    }
  3. Initialize the per-instance model matrices (M).
    void OnInit() {
      //set the instance modeling matrix
      M[0] = glm::translate(glm::mat4(1), glm::vec3(-5,0,-5));
      M[1] = glm::translate(M[0], glm::vec3(10,0,0));
      M[2] = glm::translate(M[1], glm::vec3(0,0,10));
      M[3] = glm::translate(M[2], glm::vec3(-10,0,0));
      ..
      shader.Use();
        shader.AddAttribute("vVertex");
        shader.AddUniform("PV");
         shader.AddUniform("M");
         shader.AddUniform("sub_divisions");
         glUniform1i(shader("sub_divisions"), sub_divisions);
         glUniformMatrix4fv(shader("M"), 4, GL_FALSE, glm::value_ptr(M[0])); 
      shader.UnUse();
  4. Render instances using the glDrawElementInstanced call.
    void OnRender() {
      glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
      glm::mat4 T =glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, dist));
      glm::mat4 Rx=glm::rotate(T,rX,glm::vec3(1.0f, 0.0f, 0.0f));
      glm::mat4 V =glm::rotate(Rx,rY,glm::vec3(0.0f, 1.0f,0.0f));
      glm::mat4 PV = P*V;
      
      shader.Use();
        glUniformMatrix4fv(shader("PV"),1,GL_FALSE,glm::value_ptr(PV));
        glUniform1i(shader("sub_divisions"), sub_divisions);
        glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0, 4);
      shader.UnUse();
      glutSwapBuffers();
    }

How it works…

First, we need to store the model matrix for each instance separately. Since we have four instances, we store a uniform array of four elements (M[4]). Second, we multiply the per-vertex position (vVertex) with the model matrix for the current instance (M[gl_InstanceID]).

Tip

Note that the gl_InstanceID built-in attribute will be filled with the index of each instance automatically at the time of the glDrawElementsInstanced call. Also note that this built-in attribute is only accessible in the vertex shader.

The MVP matrix is omitted from the geometry shader since now the input vertex positions are in world space. So we only need to multiply them with the combined view projection (PV) matrix. On the application side, the MV matrix is removed. Instead, we store the model matrix array for all four instances (glm::mat4 M[4]). The values of these matrices are initialized in the OnInit() function as follows:

M[0] = glm::translate(glm::mat4(1), glm::vec3(-5,0,-5));
M[1] = glm::translate(M[0], glm::vec3(10,0,0));
M[2] = glm::translate(M[1], glm::vec3(0,0,10));
M[3] = glm::translate(M[2], glm::vec3(-10,0,0));

The rendering function, OnRender(), creates the combined view projection matrix (PV) and then calls glDrawElementsInsntanced. The first four parameters are similar to the glDrawElements function. The final parameter is the total number of instances desired. Instanced rendering is an efficient mechanism for rendering identical geometry whereby the GL_ARRAY_BUFFER and GL_ELEMENT_ARRAY_BUFFER bindings are shared between instances allowing the GPU to do efficient resource access and sharing.

void OnRender() {
  glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
  glm::mat4 T = glm::translate(glm::mat4(1.0f),glm::vec3(0.0f, 0.0f, dist));
  glm::mat4 Rx = glm::rotate(T,  rX, glm::vec3(1.0f, 0.0f, 0.0f));
  glm::mat4 V = glm::rotate(Rx, rY, glm::vec3(0.0f, 1.0f, 0.0f));
  glm::mat4 PV = P*V;
  shader.Use();
    glUniformMatrix4fv(shader("PV"),1,GL_FALSE,glm::value_ptr(PV));
    glUniform1i(shader("sub_divisions"), sub_divisions);
    glDrawElementsInstanced(GL_TRIANGLES,6,GL_UNSIGNED_SHORT,0, 4);
  shader.UnUse();
  glutSwapBuffers();
}

There is always a limit on the maximum number of matrices one can output from the vertex shader and this has some performance implications as well. Some performance improvements can be obtained by replacing the matrix storage with translation and scaling vectors, and an orientation quaternion which can then be converted on the fly into a matrix in the shader.

See also

The official OpenGL wiki can be found at http://www.opengl.org/wiki/Built-in_Variable_%28GLSL%29.

An instance rendering tutorial from OGLDev can be found at http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html.

You have been reading a chapter from
OpenGL Development Cookbook
Published in: Jun 2013
Publisher: Packt
ISBN-13: 9781849695046
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image