Time for action – determining eigenvalues and eigenvectors
Let's calculate the eigenvalues of a matrix:
- Create a matrix as shown in the following:
A = np.mat("3 -2;1 0") print("A\n", A)
The matrix we created looks like the following:
A [[ 3 -2] [ 1 0]]
- Call the
eigvals()
function:print("Eigenvalues", np.linalg.eigvals(A))
The eigenvalues of the matrix are as follows:
Eigenvalues [ 2. 1.]
- Determine eigenvalues and eigenvectors with the
eig()
function. This function returns a tuple, where the first element contains eigenvalues and the second element contains corresponding eigenvectors, arranged column-wise:eigenvalues, eigenvectors = np.linalg.eig(A) print("First tuple of eig", eigenvalues) print("Second tuple of eig\n", eigenvectors)
The eigenvalues and eigenvectors appear as follows:
First tuple of eig [ 2. 1.] Second tuple of eig [[ 0.89442719 0.70710678] [ 0.4472136 0.70710678]]
- Check the result with the
dot()
function by calculating...