Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Computer Architecture and Organization – Second Edition

You're reading from   Modern Computer Architecture and Organization – Second Edition Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCs, and cloud servers

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781803234519
Length 666 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Jim Ledin Jim Ledin
Author Profile Icon Jim Ledin
Jim Ledin
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Introducing Computer Architecture FREE CHAPTER 2. Digital Logic 3. Processor Elements 4. Computer System Components 5. Hardware-Software Interface 6. Specialized Computing Domains 7. Processor and Memory Architectures 8. Performance-Enhancing Techniques 9. Specialized Processor Extensions 10. Modern Processor Architectures and Instruction Sets 11. The RISC-V Architecture and Instruction Set 12. Processor Virtualization 13. Domain-Specific Computer Architectures 14. Cybersecurity and Confidential Computing Architectures 15. Blockchain and Bitcoin Mining Architectures 16. Self-Driving Vehicle Architectures 17. Quantum Computing and Other Future Directions in Computer Architectures 18. Other Books You May Enjoy
19. Index
Appendix

Adders

General-purpose processors usually support the addition operation for performing calculations on data values and, separately, to manage the instruction pointer. Following the execution of each instruction, the instruction pointer increments to the next instruction location.

When the processor supports multi-word instructions, the updated instruction pointer must be set to its current value plus the number of words in the just-completed instruction.

A simple adder circuit adds two data bits plus an incoming carry and produces a 1-bit sum and a carry output. This circuit, shown in Figure 2.15, is called a full adder because it includes the incoming carry in the calculation. A half adder adds only the two data bits without an incoming carry:

Figure 2.15: Full adder circuit

Figure 2.15: Full adder circuit

The full adder uses logic gates to produce its output as follows. The sum bit S is 1 only if the total number of bits with a value of 1 in the collection A, B, Cin is an odd number. Otherwise...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime