In this chapter, we learned how to make predictions using TensorFlow. We studied the MNIST dataset and classification of models using this dataset. We came across the elements of DNN models and the process of building the DNN. Later, we progressed to study regression and classification with DNNs. We classified handwritten digits and learned more about building models in TensorFlow. This brings us to the end of this book! We learned how to use ensemble algorithms to produce accurate predictions. We applied various techniques to combine and build better models. We learned how to perform cross-validation efficiently. We also implemented various techniques to solve current issues in the domain of predictive analysis. And, the best part, we used the DNN models we built to solve classification and regression problems. This book has helped us implement various machine learning...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine