Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming - Third Edition

You're reading from  Mastering Embedded Linux Programming - Third Edition

Product type Book
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Pages 758 pages
Edition 3rd Edition
Languages
Authors (2):
Frank Vasquez Frank Vasquez
Profile icon Frank Vasquez
Chris Simmonds Chris Simmonds
Profile icon Chris Simmonds
View More author details

Table of Contents (27) Chapters

Preface 1. Section 1: Elements of Embedded Linux
2. Chapter 1: Starting Out 3. Chapter 2: Learning about Toolchains 4. Chapter 3: All about Bootloaders 5. Chapter 4: Configuring and Building the Kernel 6. Chapter 5: Building a Root Filesystem 7. Chapter 6: Selecting a Build System 8. Chapter 7: Developing with Yocto 9. Chapter 8: Yocto Under the Hood 10. Section 2: System Architecture and Design Decisions
11. Chapter 9: Creating a Storage Strategy 12. Chapter 10: Updating Software in the Field 13. Chapter 11: Interfacing with Device Drivers 14. Chapter 12: Prototyping with Breakout Boards 15. Chapter 13: Starting Up – The init Program 16. Chapter 14: Starting with BusyBox runit 17. Chapter 15: Managing Power 18. Section 3: Writing Embedded Applications
19. Chapter 16: Packaging Python 20. Chapter 17: Learning about Processes and Threads 21. Chapter 18: Managing Memory 22. Section 4: Debugging and Optimizing Performance
23. Chapter 19: Debugging with GDB 24. Chapter 20: Profiling and Tracing 25. Chapter 21: Real-Time Programming 26. Other Books You May Enjoy

Character devices

Character devices are identified in the user space by a special file called a device node. This filename is mapped to a device driver using the major and minor numbers associated with it. Broadly speaking, the major number maps the device node to a particular device driver, while the minor number tells the driver which interface is being accessed. For example, the device node of the first serial port on the Arm Versatile PB is named /dev/ttyAMA0, and it has major number of 204 and minor number of 64. The device node for the second serial port has the same major number, since it is handled by the same device driver, but the minor number is 65. We can see the numbers for all four serial ports from the directory listing here:

# ls -l /dev/ttyAMA*
crw-rw---- 1 root root 204, 64 Jan 1 1970 /dev/ttyAMA0
crw-rw---- 1 root root 204, 65 Jan 1 1970 /dev/ttyAMA1
crw-rw---- 1 root root 204, 66 Jan 1 1970 /dev/ttyAMA2
crw-rw---- 1 root root 204, 67 Jan 1 1970 /dev/ttyAMA3
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}