Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with PyTorch and Scikit-Learn

You're reading from   Machine Learning with PyTorch and Scikit-Learn Develop machine learning and deep learning models with Python

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801819312
Length 774 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-Learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Predicting Continuous Target Variables with Regression Analysis 10. Working with Unlabeled Data – Clustering Analysis 11. Implementing a Multilayer Artificial Neural Network from Scratch 12. Parallelizing Neural Network Training with PyTorch 13. Going Deeper – The Mechanics of PyTorch 14. Classifying Images with Deep Convolutional Neural Networks 15. Modeling Sequential Data Using Recurrent Neural Networks 16. Transformers – Improving Natural Language Processing with Attention Mechanisms 17. Generative Adversarial Networks for Synthesizing New Data 18. Graph Neural Networks for Capturing Dependencies in Graph Structured Data 19. Reinforcement Learning for Decision Making in Complex Environments 20. Other Books You May Enjoy
21. Index

Building intelligent machines to transform data into knowledge

In this age of modern technology, there is one resource that we have in abundance: a large amount of structured and unstructured data. In the second half of the 20th century, machine learning evolved as a subfield of artificial intelligence (AI) involving self-learning algorithms that derive knowledge from data to make predictions.

Instead of requiring humans to manually derive rules and build models from analyzing large amounts of data, machine learning offers a more efficient alternative for capturing the knowledge in data to gradually improve the performance of predictive models and make data-driven decisions.

Not only is machine learning becoming increasingly important in computer science research, but it is also playing an ever-greater role in our everyday lives. Thanks to machine learning, we enjoy robust email spam filters, convenient text and voice recognition software, reliable web search engines, recommendations on entertaining movies to watch, mobile check deposits, estimated meal delivery times, and much more. Hopefully, soon, we will add safe and efficient self-driving cars to this list. Also, notable progress has been made in medical applications; for example, researchers demonstrated that deep learning models can detect skin cancer with near-human accuracy (https://www.nature.com/articles/nature21056). Another milestone was recently achieved by researchers at DeepMind, who used deep learning to predict 3D protein structures, outperforming physics-based approaches by a substantial margin (https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology). While accurate 3D protein structure prediction plays an essential role in biological and pharmaceutical research, there have been many other important applications of machine learning in healthcare recently. For instance, researchers designed systems for predicting the oxygen needs of COVID-19 patients up to four days in advance to help hospitals allocate resources for those in need (https://ai.facebook.com/blog/new-ai-research-to-help-predict-covid-19-resource-needs-from-a-series-of-x-rays/). Another important topic of our day and age is climate change, which presents one of the biggest and most critical challenges. Today, many efforts are being directed toward developing intelligent systems to combat it (https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change). One of the many approaches to tackling climate change is the emergent field of precision agriculture. Here, researchers aim to design computer vision-based machine learning systems to optimize resource deployment to minimize the use and waste of fertilizers.

You have been reading a chapter from
Machine Learning with PyTorch and Scikit-Learn
Published in: Feb 2022
Publisher: Packt
ISBN-13: 9781801819312
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime