How TensorFlow works
Started as an internal project by researchers and engineers from the Google Brain team, initially named DistBelief, an open source framework for high performance numerical computations was released in November 2015 under the name TensorFlow (tensors are a generalization of scalars, vectors, matrices, and higher dimensionality matrices). You can read the original paper on the project here: http://download.tensorflow.org/paper/whitepaper2015.pdf. After the appearance of version 1.0 in 2017, last year, Google released TensorFlow 2.0, which continues the development and improvement of TensorFlow by making it more user-friendly and accessible.
Production-oriented and capable of handling different computational architectures (CPUs, GPUs, and now TPUs), TensorFlow is a framework for any kind of computation that requires high performance and easy distribution. It excels at deep learning, making it possible to create everything from shallow networks (neural networks...