Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Cybersecurity Cookbook

You're reading from   Machine Learning for Cybersecurity Cookbook Over 80 recipes on how to implement machine learning algorithms for building security systems using Python

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781789614671
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Tsukerman Emmanuel Tsukerman
Author Profile Icon Emmanuel Tsukerman
Emmanuel Tsukerman
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Machine Learning for Cybersecurity 2. Machine Learning-Based Malware Detection FREE CHAPTER 3. Advanced Malware Detection 4. Machine Learning for Social Engineering 5. Penetration Testing Using Machine Learning 6. Automatic Intrusion Detection 7. Securing and Attacking Data with Machine Learning 8. Secure and Private AI 9. Other Books You May Enjoy Appendix

Building a dynamic malware classifier

In certain situations, there is a considerable advantage to being able to detect malware based on its behavior. In particular, it is much more difficult for a malware to hide its intentions when it is being analyzed in a dynamic situation. For this reason, classifiers that operate on dynamic information can be much more accurate than their static counterparts. In this section, we provide a recipe for a dynamic malware classifier. The dataset we use is part of a VirusShare repository from android applications. The dynamic analysis was performed by Johannes Thon on several LG Nexus 5 devices with Android API 23, (over 4,000 malicious apps were dynamically analyzed on the LG Nexus 5 device farm (API 23), and over 4,300 benign apps were dynamically analyzed on the LG Nexus 5 device farm (API 23) by goorax, used under CC BY / unmodified from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image