Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

Test sleep in an atomic context

You have already learned that the one thing we should not do is sleep (block) in any kind of atomic or interrupt context. Let's put this to the test. As always, the empirical approach where you test things for yourself rather than relying on other's experiences is key!

How exactly can we test this? Easy: we shall use a simple integer module parameter, buggy, that, when set to 1 (the default value being 0), executes a code path within our spinlock's critical section that violates this rule. We shall invoke the schedule_timeout() API (which, as you learned in Chapter 5Working with Kernel Timers, Threads, and Workqueues, in the Understanding how to use the *sleep() blocking APIs section) internally invokes schedule(); it's how we go to sleep in the kernel space). Here's the relevant code:

// ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c
[ ... ]
static int buggy...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime