Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Python

You're reading from   Learning Python Learn to code like a professional with Python - an open source, versatile, and powerful programming language

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781783551712
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Fabrizio Romano Fabrizio Romano
Author Profile Icon Fabrizio Romano
Fabrizio Romano
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction and First Steps – Take a Deep Breath FREE CHAPTER 2. Built-in Data Types 3. Iterating and Making Decisions 4. Functions, the Building Blocks of Code 5. Saving Time and Memory 6. Advanced Concepts – OOP, Decorators, and Iterators 7. Testing, Profiling, and Dealing with Exceptions 8. The Edges – GUIs and Scripts 9. Data Science 10. Web Development Done Right 11. Debugging and Troubleshooting 12. Summing Up – A Complete Example Index

Dealing with data


Typically, when you deal with data, this is the path you go through: you fetch it, you clean and manipulate it, then you inspect it and present results as values, spreadsheets, graphs, and so on. I want you to be in charge of all three steps of the process without having any external dependency on a data provider, so we're going to do the following:

  1. We're going to create the data, simulating the fact that it comes in a format which is not perfect or ready to be worked on.

  2. We're going to clean it and feed it to the main tool we'll use in the project: DataFrame of pandas.

  3. We're going to manipulate the data in the DataFrame.

  4. We're going to save the DataFrame to a file in different formats.

  5. Finally, we're going to inspect the data and get some results out of it.

Setting up the notebook

First things first, we need to set up the notebook. This means imports and a bit of configuration.

#1

import json
import calendar
import random
from datetime import date, timedelta

import faker
import...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime