Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning OpenCV 5 Computer Vision with Python

You're reading from   Learning OpenCV 5 Computer Vision with Python Tackle computer vision and machine learning with the newest tools, techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781803230221
Length
Edition 4th Edition
Arrow right icon
Authors (2):
Arrow left icon
Joe Minichino Joe Minichino
Author Profile Icon Joe Minichino
Joe Minichino
Joseph Howse Joseph Howse
Author Profile Icon Joseph Howse
Joseph Howse
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

1. Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning FREE CHAPTER
2. Setting Up OpenCV 3. Handling Files, Cameras, and GUIs 4. Processing Images with OpenCV 5. Detecting and Recognizing Faces 6. Retrieving Images and Searching Using Image Descriptors 7. Building Custom Object Detectors 8. Tracking Objects 9. Camera Models and Augmented Reality 10. Introduction to Neural Networks with OpenCV 11. OpenCV Applications at Scale Appendix A: Bending Color Space with the Curves Filter

Finding homography with FLANN-based matches

First of all, what is homography? Let's read a definition from the internet:

"A relation between two figures, such that to any point of the one corresponds one and but one point in the other, and vice versa. Thus, a tangent line rolling on a circle cuts two fixed tangents of the circle in two sets of points that are homographic."

If you – like the authors of this book – are none the wiser from the preceding definition, you will probably find the following explanation a bit clearer: homography is a condition in which two figures find each other when one is a perspective distortion of the other.

First, let's take a look at what we want to achieve so that we can fully understand what homography is. Then, we will go through the code.

Imagine that we want to search for the following tattoo:

Figure 6.16: An anchor tattoo, to be used for keypoint matching and finding homography

We, as human beings, can easily locate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime