Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Jupyter for Data Science

You're reading from   Jupyter for Data Science Exploratory analysis, statistical modeling, machine learning, and data visualization with Jupyter

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781785880070
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dan Toomey Dan Toomey
Author Profile Icon Dan Toomey
Dan Toomey
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Jupyter and Data Science FREE CHAPTER 2. Working with Analytical Data on Jupyter 3. Data Visualization and Prediction 4. Data Mining and SQL Queries 5. R with Jupyter 6. Data Wrangling 7. Jupyter Dashboards 8. Statistical Modeling 9. Machine Learning Using Jupyter 10. Optimizing Jupyter Notebooks

Expanding on panda data frames in Jupyter

There are more functions built-in for working with data frames than we have used so far. If we were to take one of the data frames from a prior example in this chapter, the Titanic dataset from an Excel file, we could use additional functions to help portray and work with the dataset.

As a repeat, we load the dataset using the script:

import pandas as pd
df = pd.read_excel('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls')

We can then inspect the data frame using the info function, which displays the characteristics of the data frame:

df.info()  

Some of the interesting points are as follows:

  • 1309 entries
  • 14 columns
  • Not many fields with valid data in the body column—most were lost
  • Does give a good overview of the types of data involved

We can also use the describe function, which gives us a statistical...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image