What is machine learning interpretation?
To interpret something is to explain the meaning of it. In the context of machine learning, that something is an algorithm. More specifically, that algorithm is a mathematical one that takes input data and produces an output, much like with any formula.
Let’s examine the most basic of models, simple linear regression, illustrated in the following formula:
Once fitted to the data, the meaning of this model is that predictions are a weighted sum of the x features with the β coefficients. In this case, there’s only one x feature or predictor variable, and the y variable is typically called the response or target variable. A simple linear regression formula single-handedly explains the transformation, which is performed on the input data x1 to produce the output . The following example can illustrate this concept in further detail.
Understanding a simple weight prediction model
If you go to this web page...