Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Unsupervised Learning with Python

You're reading from   Hands-On Unsupervised Learning with Python Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789348279
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Unsupervised Learning FREE CHAPTER 2. Clustering Fundamentals 3. Advanced Clustering 4. Hierarchical Clustering in Action 5. Soft Clustering and Gaussian Mixture Models 6. Anomaly Detection 7. Dimensionality Reduction and Component Analysis 8. Unsupervised Neural Network Models 9. Generative Adversarial Networks and SOMs 10. Assessments 11. Other Books You May Enjoy

Anomaly detection with Isolation Forests

A very powerful anomaly detection method has been proposed by Liu F T, Ting K M, and Zhou Z, in the article Isolation Forest, ICDM 2008, Eighth IEEE International Conference on Data Mining, 2008) and it's based on the general framework of ensemble learning. As this topic is very wide and mainly covered in supervised machine-learning books, we invite the reader to check one of the suggested resources if necessary. In this context, instead, we are going to describe the model without a very strong reference to all the underlying theory.

Let's start by saying that a forest is a set of independent models called decision trees. As the name suggests, more than algorithms, they are a very practical way to partition a dataset. Starting from the root, for each node, a feature and a threshold are selected and the samples are split into two...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime