Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On RTOS with Microcontrollers

You're reading from   Hands-On RTOS with Microcontrollers Building real-time embedded systems using FreeRTOS, STM32 MCUs, and SEGGER debug tools

Arrow left icon
Product type Paperback
Published in May 2020
Publisher Packt
ISBN-13 9781838826734
Length 496 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Brian Amos Brian Amos
Author Profile Icon Brian Amos
Brian Amos
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Introduction and RTOS Concepts
2. Introducing Real-Time Systems FREE CHAPTER 3. Understanding RTOS Tasks 4. Task Signaling and Communication Mechanisms 5. Section 2: Toolchain Setup
6. Selecting the Right MCU 7. Selecting an IDE 8. Debugging Tools for Real-Time Systems 9. Section 3: RTOS Application Examples
10. The FreeRTOS Scheduler 11. Protecting Data and Synchronizing Tasks 12. Intertask Communication 13. Section 4: Advanced RTOS Techniques
14. Drivers and ISRs 15. Sharing Hardware Peripherals across Tasks 16. Tips for Creating a Well-Abstracted Architecture 17. Creating Loose Coupling with Queues 18. Choosing an RTOS API 19. FreeRTOS Memory Management 20. Multi-Processor and Multi-Core Systems 21. Troubleshooting Tips and Next Steps 22. Assessments 23. Other Books You May Enjoy

Creating ISR-based drivers

In the first iteration of the UART driver, a task polled the UART peripheral registers to determine when a new byte had been received. The constant polling is what caused the task to consume > 95% of CPU cycles. The most meaningful work done by this task-based driver was transferring bytes of data out of the UART peripheral and into the queue.

In this iteration of the driver, instead of using a task to continuously poll the UART registers, we'll set up the UART2 peripheral and NVIC to provide an interrupt when a new byte is received.

Queue-based driver

First, let's look at how to more efficiently implement the polled driver (previously implemented by polling the UART registers within...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime