In this chapter, we had a look at some of the recent advancements in the field of NLP, encompassing Seq2Seq modeling, the attention mechanism, the Transformer model, and BERT, all of which have revolutionized the way NLP problems are approached today. We began with a discussion on Seq2Seq modeling where we looked at its core components, the encoder and decoder. Based on the knowledge garnered, we built a French-to-English translator using the encoder-decoder stack. After that, we had a detailed discussion on the attention mechanism, which has allowed great parallelization leading to fast NLP training, and has also improved upon the results from the existing architectures. Next, we looked at Transformers and discussed every component inside the encoder-decoder stack of the Transformers. We also saw how the attention mechanism can be used as the core building block of such architectures, and can possibly provide a replacement for the existing RNN-based architectures. Finally, we...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine