Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On C++ Game Animation Programming

You're reading from   Hands-On C++ Game Animation Programming Learn modern animation techniques from theory to implementation with C++ and OpenGL

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800208087
Length 368 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Chapter 1: Creating a Game Window 2. Chapter 2: Implementing Vectors FREE CHAPTER 3. Chapter 3: Implementing Matrices 4. Chapter 4: Implementing Quaternions 5. Chapter 5: Implementing Transforms 6. Chapter 6: Building an Abstract Renderer 7. Chapter 7: Exploring the glTF File Format 8. Chapter 8: Creating Curves, Frames, and Tracks 9. Chapter 9: Implementing Animation Clips 10. Chapter 10: Mesh Skinning 11. Chapter 11: Optimizing the Animation Pipeline 12. Chapter 12: Blending between Animations 13. Chapter 13: Implementing Inverse Kinematics 14. Chapter 14: Using Dual Quaternions for Skinning 15. Chapter 15: Rendering Instanced Crowds 16. Other Books You May Enjoy

Pre-generating the skin matrix

One of the bigger problems with Vertex Shader Skinning is the number of uniforms that the system takes up. One mat4 object takes up four uniform slots and the skinned vertex shader currently has two matrix arrays that have 120 elements each. That comes to a total of 960 uniform slots, which is excessive.

What happens with those two matrix arrays in the vertex shader? They get multiplied together, as follows:

mat4 skin=(pose[joints.x]*invBindPose[joints.x])*weights.x;
  skin += (pose[joints.y]*invBindPose[joints.y])*weights.y;
  skin += (pose[joints.z]*invBindPose[joints.z])*weights.z;
  skin += (pose[joints.w]*invBindPose[joints.w])*weights.w;

One easy optimization here is to combine the pose * invBindPose multiplication so that the shader only needs one array. This does mean that some of the skinning process is moved back to the CPU, but this change clears up 480 uniform slots.

Generating the skin matrix

Generating...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime