Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Exploratory Data Analysis with Python Cookbook

You're reading from   Exploratory Data Analysis with Python Cookbook Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781803231105
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ayodele Oluleye Ayodele Oluleye
Author Profile Icon Ayodele Oluleye
Ayodele Oluleye
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Generating Summary Statistics 2. Chapter 2: Preparing Data for EDA FREE CHAPTER 3. Chapter 3: Visualizing Data in Python 4. Chapter 4: Performing Univariate Analysis in Python 5. Chapter 5: Performing Bivariate Analysis in Python 6. Chapter 6: Performing Multivariate Analysis in Python 7. Chapter 7: Analyzing Time Series Data in Python 8. Chapter 8: Analysing Text Data in Python 9. Chapter 9: Dealing with Outliers and Missing Values 10. Chapter 10: Performing Automated Exploratory Data Analysis in Python 11. Index 12. Other Books You May Enjoy

Removing duplicate data

Duplicate data can be very misleading and can lead us to wrong conclusions about patterns and the distribution of our data. Therefore, it is very important to address duplicate data within our dataset before embarking on any analysis. Performing a quick duplicate check is good practice in EDA. When working with tabular datasets, we can identify duplicate values in specific columns or duplicate records (across multiple columns). A good understanding of our dataset and the domain will give us insight into what should be considered a duplicate. In pandas, the drop_duplicates method can help us with handling duplicate values or records within our dataset.

Getting ready

We will work with the full Marketing Campaign data for this recipe.

How to do it…

We will remove duplicate data using the pandas library:

  1. Import the pandas library:
    import pandas as pd
  2. Load the .csv file into a dataframe using read_csv. Then, subset the dataframe to include only relevant columns:
    marketing_data = pd.read_csv("data/marketing_campaign.csv")
    marketing_data = marketing_data[['Education','Marital_Status','Kidhome', 'Teenhome']]
  3. Inspect the data. Check the first few rows. Also, check the number of columns and rows:
    marketing_data.head()
            Education    Marital_Status    Kidhome    Teenhome
    0    Graduation    Single    0    0
    1    Graduation    Single    1    1
    2    Graduation    Together    0    0
    3    Graduation    Together    1    0
    4    PhD    Married    1    0
    marketing_data.shape
    (2240, 4)
  4. Remove duplicates across the four columns in our dataset:
    marketing_data_duplicate = marketing_data.drop_duplicates()
  5. Inspect the result:
    marketing_data_duplicate.head()
        Education    Marital_Status    Kidhome    Teenhome
    0    Graduation    Single    0    0
    1    Graduation    Single    1    1
    2    Graduation    Together    0    0
    3    Graduation    Together    1    0
    4    PhD    Married    1    0
    marketing_data_duplicate.shape
    (135,4)

We have now removed duplicates from our dataset.

How it works...

We refer to pandas as pd in step 1. In step 2, we use read_csv to load the .csv file into a pandas dataframe and call it marketing_data. We also subset the dataframe to include only four relevant columns. In step 3, we inspect the dataset using head() to see the first five rows in the dataset. Using the shape method, we get a sense of the number of rows and columns from the tuple respectively.

In step 4, we use the drop_duplicates method to remove duplicate rows that appear in the four columns of our dataset. We save the result in the marketing_data_duplicate variable. In step 5, we inspect the result using the head method to see the first five rows. We also leverage the shape method to inspect the number of rows and columns. We can see that the rows have decreased significantly from our original shape.

There’s more...

The drop_duplicates method gives some flexibility around dropping duplicates based on a subset of columns. By supplying the list of the subset columns as the first argument, we can drop all rows that contain duplicates based on those subset columns. This is useful when we have several columns and only a few key columns contain duplicate information. Also, it allows us to keep instances of duplicates, using the keep parameter. With the keep parameter, we can specify whether we want to keep the “first” or “last” instance or drop all instances of the duplicate information. By default, the method keeps the first instance.

You have been reading a chapter from
Exploratory Data Analysis with Python Cookbook
Published in: Jun 2023
Publisher: Packt
ISBN-13: 9781803231105
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image