Technical requirements
We’ll focus on the PyTorch ecosystem in this chapter. Here’s the full list of libraries that will be used in this chapter:
- NumPy (1.26.2)
- pandas (2.1.3)
- scikit-learn (1.3.2)
- PyTorch Forecasting (1.0.0)
- PyTorch Lightning (2.1.2)
- torch (2.1.1)
- statsforecast (1.6.0)
- GluonTS (0.14.2)
- gpytorch (1.11)
- prophet (1.1.5)
You can install these libraries using pip
, Python’s package manager. For example, to install scikit-learn
, you can run the following command:
pip install -U scikit-learn
The code for this chapter can be found in this book’s GitHub repository: https://github.com/PacktPublishing/Deep-Learning-for-Time-Series-Data-Cookbook.