Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Time Series Cookbook

You're reading from   Deep Learning for Time Series Cookbook Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129233
Length 274 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
LuĂ­s Roque LuĂ­s Roque
Author Profile Icon LuĂ­s Roque
LuĂ­s Roque
Vitor Cerqueira Vitor Cerqueira
Author Profile Icon Vitor Cerqueira
Vitor Cerqueira
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series 2. Chapter 2: Getting Started with PyTorch FREE CHAPTER 3. Chapter 3: Univariate Time Series Forecasting 4. Chapter 4: Forecasting with PyTorch Lightning 5. Chapter 5: Global Forecasting Models 6. Chapter 6: Advanced Deep Learning Architectures for Time Series Forecasting 7. Chapter 7: Probabilistic Time Series Forecasting 8. Chapter 8: Deep Learning for Time Series Classification 9. Chapter 9: Deep Learning for Time Series Anomaly Detection 10. Index 11. Other Books You May Enjoy

Handling seasonality – seasonal differencing

In this recipe, we show how differencing can be used to model seasonal patterns in time series.

Getting ready

We’ve learned to use first differences to remove the trend from time series. Differencing can also work for seasonality. But, instead of taking the difference between consecutive observations, for each point, you subtract the value of the previous observation from the same season. For example, suppose you’re modeling monthly data. You perform seasonal differencing by subtracting the value of February of the previous year from the value of February of the current year.

The process is similar to what we did with first differences to remove the trend. Let’s start by loading the data:

time_series = df["Incoming Solar"]
train, test = train_test_split(time_series, test_size=0.2, shuffle=False)

In this recipe, we’ll use seasonal differencing to remove yearly seasonality.

How...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime