Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Dancing with Qubits

You're reading from   Dancing with Qubits How quantum computing works and how it can change the world

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838827366
Length 516 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface
1 Why Quantum Computing? FREE CHAPTER 2 They’re Not Old, They’re Classics 3 More Numbers than You Can Imagine 4 Planes and Circles and Spheres, Oh My 5 Dimensions 6 What Do You Mean ‘‘Probably’’? 7 One Qubit 8 Two Qubits, Three 9 Wiring Up the Circuits 10 From Circuits to Algorithms 11 Getting Physical 12 Questions about the Future Afterword
Other Books You May Enjoy Appendices

2.2 The power of two

For a system based on 0s and 1s, the number 2 shows up a lot in classical computing. This is not surprising because we use binary arithmetic, which is a set of operations on base 2 numbers.

Most people use base 10 for their numbers. These are also called decimal numbers. We construct such numbers from the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, which we often call digits. Note that the largest digit, 9, is one less than 10, the base.

A number such as 247 is really shorthand for the longer 2 × 102 + 4 × 101 + 7 ×100. For 1,003 we expand to 1 × 103 + 0 × 102 + 0 × 101 + 3×100. In these expansions we write a sum of digits between 0 and 9 multiplied by powers of 10 in decreasing order with no intermediate powers omitted.

We do something similar for binary. A binary number is written as a sum of bits (0 or 1) multiplied by powers of 2 in decreasing order with no intermediate powers omitted. Here are some examples...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image