Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Big Data Analytics with Hadoop 3

You're reading from   Big Data Analytics with Hadoop 3 Build highly effective analytics solutions to gain valuable insight into your big data

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788628846
Length 482 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Hadoop 2. Overview of Big Data Analytics FREE CHAPTER 3. Big Data Processing with MapReduce 4. Scientific Computing and Big Data Analysis with Python and Hadoop 5. Statistical Big Data Computing with R and Hadoop 6. Batch Analytics with Apache Spark 7. Real-Time Analytics with Apache Spark 8. Batch Analytics with Apache Flink 9. Stream Processing with Apache Flink 10. Visualizing Big Data 11. Introduction to Cloud Computing 12. Using Amazon Web Services

Spark Streaming


Spark Streaming wasn't the first streaming architecture. Over time, multiple technologies have been developed in order to address various real-time processing needs. One of the first popular stream processor technologies was Twitter Storm, and it was used in many businesses. Spark includes the streaming library, which has grown to become the most widely used technology today. This is mainly because Spark Streaming holds some significant advantages over all of the other technologies, the most important being its integration of Spark Streaming APIs within its core API. Not only that, but Spark Streaming is also integrated with Spark ML and Spark SQL, along with GraphX. Because of all of these integrations, Spark is a powerful and versatile streaming technology.

Note that https://spark.apache.org/docs/2.1.0/streaming-programming-guide.html has more information on Spark Streaming Flink, Heron (Twitter Storm's successor), and Samza and their various features; for example, their...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image