Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Automated Machine Learning with AutoKeras

You're reading from   Automated Machine Learning with AutoKeras Deep learning made accessible for everyone with just few lines of coding

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800567641
Length 194 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Luis Sobrecueva Luis Sobrecueva
Author Profile Icon Luis Sobrecueva
Luis Sobrecueva
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: AutoML Fundamentals
2. Chapter 1: Introduction to Automated Machine Learning FREE CHAPTER 3. Chapter 2: Getting Started with AutoKeras 4. Chapter 3: Automating the Machine Learning Pipeline with AutoKeras 5. Section 2: AutoKeras in Practice
6. Chapter 4: Image Classification and Regression Using AutoKeras 7. Chapter 5: Text Classification and Regression Using AutoKeras 8. Chapter 6: Working with Structured Data Using AutoKeras 9. Chapter 7: Sentiment Analysis Using AutoKeras 10. Chapter 8: Topic Classification Using AutoKeras 11. Section 3: Advanced AutoKeras
12. Chapter 9: Working with Multimodal and Multitasking Data 13. Chapter 10: Exporting and Visualizing the Models 14. Other Books You May Enjoy

Visualizing your models with TensorBoard

To develop efficient and successful models, you will need to know what is happening during your experiments so that you can react as soon as possible by correcting possible anomalous or unwanted results, such as overfitting and slow learning. This is where the concept of a tactile callback comes into play.

A callback is an object (a class instance that implements specific methods) that is passed to the model on the call to fit and that is called by the model at various points during training. You have access to all available data on the status of the model and its performance and, based on this, take measures including the following:

  • Interrupt training, because you have stopped learning or are overfitting
  • Save a model; in this way, the training could be resumed from the saved point in the future
  • Record metrics, such as precision or loss
  • Alter its state, and modify its structure or hyperparameters, such as the learning...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image