Data cleansing and transformation
Just as gas powers a car, data is the lifeblood of AI. The age-old adage of "garbage in, garbage out" remains painfully true. For this reason, having clean and accurate data is paramount to producing consistent, reproducible, and accurate AI models. Some of this data cleansing has required painstaking human involvement. By some measures, it is said that a data scientist spends about 80% of their time cleaning, preparing, and transforming their input data and 20% of the time running and optimizing their models. Examples of this are the ImageNet and MS-COCO image datasets. Both contain over a million labeled images of various objects and categories. These datasets are used to train models that can distinguish between different categories and object types. Initially, these datasets were painstakingly and patiently labeled by humans. As these systems become more prevalent, we can use AI to perform the labeling. Furthermore, there is a plethora of AI-enabled tools that help with the cleansing and deduplication process.
One good example is Amazon Lake Formation. In August 2019, Amazon made its service Lake Formation generally available. Amazon Lake Formation automates some of the steps typically involved in the creation of a data lake including the collection, cleansing, deduplication, cataloging, and publication of data. The data then can be made available for analytics and to build machine models. To use Lake Formation, a user can bring data into the lake from a range of sources using predefined templates. They can then define policies that govern data access depending on the level of access that groups across the organization require.
Some automatic preparation, cleansing, and classification that the data undergoes uses machine learning to automatically perform these tasks.
Lake Formation also provides a centralized dashboard where administrators can manage and monitor data access policies, governance, and auditing across multiple analytics engines. Users can also search for datasets in the resulting catalog. As the tool evolves in the next few months and years, it will facilitate the analysis of data using their favorite analytics and machine learning services, including:
- Databricks
- Tableau
- Amazon Redshift
- Amazon Athena
- AWS Glue
- Amazon EMR
- Amazon QuickSight
- Amazon SageMaker