Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence for Cybersecurity

You're reading from   Artificial Intelligence for Cybersecurity Develop AI approaches to solve cybersecurity problems in your organization

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781805124962
Length 358 pages
Edition 1st Edition
Arrow right icon
Authors (4):
Arrow left icon
Bojan Kolosnjaji Bojan Kolosnjaji
Author Profile Icon Bojan Kolosnjaji
Bojan Kolosnjaji
Apostolis Zarras Apostolis Zarras
Author Profile Icon Apostolis Zarras
Apostolis Zarras
Huang Xiao Huang Xiao
Author Profile Icon Huang Xiao
Huang Xiao
Peng Xu Peng Xu
Author Profile Icon Peng Xu
Peng Xu
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Part 1: Data-Driven Cybersecurity and AI
2. Chapter 1: Big Data in Cybersecurity FREE CHAPTER 3. Chapter 2: Automation in Cybersecurity 4. Chapter 3: Cybersecurity Data Analytics 5. Part 2: AI and Where It Fits In
6. Chapter 4: AI, Machine Learning, and Statistics - A Taxonomy 7. Chapter 5: AI Problems and Methods 8. Chapter 6: Workflow, Tools, and Libraries in AI Projects 9. Part 3: Applications of AI in Cybersecurity
10. Chapter 7: Malware and Network Intrusion Detection and Analysis 11. Chapter 8: User and Entity Behavior Analysis 12. Chapter 9: Fraud, Spam, and Phishing Detection 13. Chapter 10: User Authentication and Access Control 14. Chapter 11: Threat Intelligence 15. Chapter 12: Anomaly Detection in Industrial Control Systems 16. Chapter 13: Large Language Models and Cybersecurity 17. Part 4: Common Problems When Applying AI in Cybersecurity
18. Chapter 14: Data Quality and its Usage in the AI and LLM Era 19. Chapter 15: Correlation, Causation, Bias, and Variance 20. Chapter 16: Evaluation, Monitoring, and Feedback Loop 21. Chapter 17: Learning in a Changing and Adversarial Environment 22. Chapter 18: Privacy, Accountability, Explainability, and Trust – Responsible AI 23. Part 5: Final Remarks and Takeaways
24. Chapter 19: Summary 25. Index 26. Other Books You May Enjoy

Case studies and examples

Now that we’ve explored the theoretical aspects of correlation, causation, bias, and variance, let’s dive into some real-world case studies and examples. These scenarios will help you see how these concepts are applied in the field of cybersecurity, providing a practical perspective that enhances your understanding and application skills.

Case study 1 – correlation versus causation in phishing attacks

Imagine a cybersecurity firm that analyses email traffic to identify phishing attempts. Through their analysis, they find a strong correlation between the times when emails are sent and the incidence of phishing attacks, with a spike in phishing emails observed during early morning hours:

  • Initial observation: The firm initially considers the possibility that attackers prefer early mornings for their activities. However, further investigation reveals that this correlation does not imply causation. Instead, it›s discovered...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image